четверг, 31 мая 2012 г.

56. Векторна та растрова графіка.


56. Векторна та растрова графіка.
 Ве́кторна гра́фіка (також геометричне моделювання або об’єктно-орієнтована графіка) створення зображення з сукупності геометричних примітивів - (точок, ліній, кривих, полігонів), тобто об’єктів, які можна описати математичним рівнянням. На відміну від растрової графіки, яка подає зображення як набір пікселів (точок).
Людське око працює як растрова картинка: Воно захоплює зображення хаотичних фотонів нервовими рецепторами, як растрове зображення. Але мозок — відповідно до поширенного тлумачення — зберігає його як векторне зображення. Мабуть, тому, що — як і в комп'ютері — його легше зберігати. Це пояснює чому люди можуть розпізнавати прості малюнки як мультфільми тільки з контурами тому, що це дуже подібно до того як працює людський мозок. Це також використовується як пояснення того факту що логотипи та знаки(символи) з простими та геометричними формами більш легко запам'ятовуються та впізнаються.

Зміст

o          5.1 Комерційні

Огляд

Все сучасне комп'ютерне відео показує переведене векторне представлення зображення в растровий формат. Для відображення векторного формату на растровому використовуються перетворювачі, програмні або апаратні, вбудовані у відео-карту. Растрове зображення, яке містить значення для кожного пікселя на екрані, зберігається у пам'яті і весь екран оновлюється 30 або більше разів на секунду.
На початку комп'ютерної епохи в 1950 році а також в 1980, використовувались різні типи відображення векторної графічної системи В цих системах електронне ядро КПТ монітора направлялась прямо щоб намітити необхідну форму, лінійний сегмент як лінійний сегмент, залишок екрану при цьому відображається чорним. Цей процес повторювався багато разів на секунду щоб уникнути блимання картинки. Ця система дозволяє відображати лінійне зображення з дуже високою роздільною здатністю, і переміщати зображення, які є показані без (на цей часу) немислимо величезної кількості пам'яті, яка була б потрібна системі растрово-еквівалентного рішення. Ці засновані на векторі монітори були також відомі як X-Y displays.
Оригінальна фотографія, JPEG растрового зображення.
Steam Locomotive 7646 як векторне зображення, спочатку Windows Metafile (переведенний в GIF щоб показати тут).
Спочатку людське око сприймає зображення подібно до растрового образу. Картинка проектується на сітківку, що складається з окремих, реагуючих на світло кліток. Далі система око-мозок розпізнає в зображенні окремі об'єкти, геометричні фігури, які вже легко обробляти і запам'ятовувати.
Окрім цього існує вузький клас пристроїв, орієнтованих виключно на відображення векторних даних. До них відносяться графічні пристрої, а також деякі типи лазерних проекторів.
Термін векторна графіка використовується в основному в контексті двомірної комп'ютерної графіки.

Спосіб зберігання зображення

Розглянемо, наприклад, коло радіуса r. Список інформації, необхідної для повного опису кола, такий:
1.                    радіус r;
2.                    координати центру кола;
3.                    колір і товщина контура (можливо прозорий);
4.                    колір заповнення (можливо прозорий).
Переваги цього способу опису графіки над растровою графікою:
· Мінімальна кількість інформації передається набагато меншому розміру файлу (розмір не залежить від величини об'єкта).
· Відповідно, можна нескінченно збільшити, наприклад, дугу кола, і вона залишиться гладкою. З іншого боку, полігон, що представляє криву, покаже, що вона насправді не крива.
· При збільшенні або зменшенні об'єктів товщина ліній може бути постійною.
· Параметри об'єктів зберігаються і можуть бути змінені. Це означає, що переміщення, масштабування, обертання, заповнення і так далі не погіршать якості малюнка. Більш того, зазвичай указують розміри в апаратно-незалежних одиницях (англ. device-independent unit), які ведуть до якнайкращої можливої растеризації на растрових приладах.
До недоліків варто віднести, що не кожен об'єкт може бути легко зображений у векторному вигляді. Крім того, кількість пам'яті і часу на відображення залежить від числа об'єктів і їх складності.

Типові примітивні об'єкти

· Лінії і ламані лінії.
· Текст (у комп'ютерних шрифтах, таких як Truetype, кожна буква створюється з кривих Безьє).
Цей список неповний. Є різні типи кривих (Catmull-rom сплайни, NURBS і так далі), які використовуються в різних застосуваннях.
Також можливо розглядати растрове зображення як примітивний об'єкт. Відповідно до концептуальної точки зору, він поводиться як прямокутник.

[ред.] Векторні операції

Векторні графічні редактори, типово, дозволяють обертати, переміщати, відображати, розтягувати, скошувати, виконувати основні аффінні перетворення над об'єктами, змінювати z-order і комбінувати примітиви в складніші об'єкти.
Векторна графіка ідеальна для простих або складених малюнків, які мають бути апаратно-незалежними або не потребують фото-реалізму. Наприклад, Postscript і PDF використовують модель векторної графіки.
Ра́строва гра́фіка (англ. Raster graphics) — графіка, представлена у машинній пам'яті у вигляді растру. Обробка растрової графіки здійснюється растровими графічними редакторами.
Растрова графіка застосовується у випадках, коли графічний об'єкт представлено у вигляді комбінації точок (пікселів), яким притаманні свій колір та яскравість і які певним чином розташовані у координатній сітці. Такий підхід є ефективним у разі, коли графічне зображення має багато напівтонів і інформація про колір важливіша за інформацію про форму (фотографії та поліграфічні зображення). При редагуванні растрових об'єктів, користувач змінює колір точок, а не форми ліній. Растрова графіка залежить від оптичної роздільності, оскільки її об'єкти описуються точками у координатній сітці певного розміру. Роздільність вказує кількість точок на одиницю довжини.
Потрібно розрізняти:
· роздільність оригінала;
· роздільність екранного зображення;
· роздільність друкованого зображення.
Роздільність оригінала. Вимірюється у точках на дюйм (dpi — dots per inch) і залежить від вимог до якості зображення та розміру файлу, способу оцифрування або методу створення готового зображення, вибраного формату файлу та інших параметрів. Зрештою, чим вище вимоги до якості, тим більша має бути роздільність.
Роздільність екранного зображення. Для екранного зображення, елементарну точку растра називають пікселом. Розмір піксела коливається в залежності від вибраної екранної роздільності, роздільності оригіналу й масштабу відображення. Монітори можуть забезпечити роздільність 640х480, 800х600, 1024х768, 1600х1200 і вище. Відстань між сусідніми точками люмінофора в якісному моніторі складає 0,22-0,25 мм. Для екранного зображення достатньо роздільності 72 dpi.
Роздільність друкованого зображення. Розмір точки растрового зображення залежить від застосованого методу та параметрів растрування оригіналу. При раструванні на оригінал накладається сітка ліній, комірки якої утворюють елемент растра. Частота сітки растра вимірюється числом ліній на дюйм (lpi — lines per inch) і називається лінєатурою. Розмір точки растра розраховується для кожного елементу і залежить від інтенсивності тону в цій комірці. Якщо у растрі є абсолютно чорний колір, тоді розмір точки растра збігається з розміром елементу растра (100% заповненість). Для абсолютно білого кольору заповненість складає 0%. На практиці заповненість коливається у межах 3-98%.
Всі точки растру мають однакову оптичну щільність, що наближується до абсолютно чорного кольору. Ілюзія темнішого кольору створюється за рахунок збільшення розмірів точок і скорочення проміжкового поля між ними при однаковій відстані між центрами елементів растра. Такий метод називається растрування з амплітудною модуляцією.
При застосуванні методу з частотною модуляцією, інтенсивність тону регулюється зміною відстані між сусідніми точками однакового розміру, тобто в комірках растра з різною інтенсивністю тону знаходиться різне число точок. Зображення, растровані за частотно-модульним методом, якісніші, оскільки розмір точок мінімальний.
При методі стохастичного растрування, враховується число точок, необхідне для відображення потрібної інтенсивності тону у комірці растра. Згодом, ці точки розташовуються всередині комірки на відстані, що підраховується квазівипадковим методом. Регулярна структура растра всередині комірки й у зображення відсутня. Такий спосіб потребує великих трат обчислювальних ресурсів і високої точності поліграфічного устаткування, тому застосовується лише для художніх робіт.
Глибина кольору. Характеризує максимальне число кольорів, які використані у зображенні. Існує декілька типів зображень із різною глибиною кольору:
чорно-білі; у відтінках сірого; з індексованими кольорами; повноколірні; Чорно-білі зображення. На один піксел зображення відводиться 1 біт інформації — чорний та білий. Глибина кольору — 1 біт.
Зображення у відтінках сірого. Піксел сірого зображення кодується 8 бітами (1 байт). Глибина кольору — 8 біт, піксел може приймати 256 різних значень — від білого (255) до чорного (0 яскравості).
Зображення з індексованими кольорами. Перші кольорові монітори працювали з обмеженою колірною гамою (16, згодом 256 кольорів). Такі кольори називаються індексованими і кодуються 4 або 8 бітами у вигляді колірних таблиць. В такій таблиці всі кольори вже визначені і можна використовувати лише їх.
Повноколірні зображення. Глибина кольору не менше як 24 біти, що дає можливість відтворити понад 16 мільйонів відтінків. Повноколірні зображення називаються True Color (правдивий колір). Бітовий обсяг кожного піксела розподіляється за основними кольорами обраної колірної моделі, по 8 бітів на колір. Колірні складові організуються у вигляді каналів, спільне зображення каналів визначає колір зображення. Повноколірні зображення на відміну від вище розглянутих є багатоканальними і залежать від колірної моделі (RGB, CMY, CMYK, Lab, HBS), які різняться за глибиною кольорів і способом математичного опису кольорів.
Інтенсивність тону (світлота). Поділяється на 256 рівнів. Більше число градацій не сприймається людським оком і є надлишковим. Менша кількість погіршує сприйняття інформації (мінімальним є 150 рівнів). Для відтворення 256 рівнів тону достатньо мати розмір комірки растра 16х16 точок.
Розмір файлу. Засобами растрової графіки створюють та обробляють зображення, що потребують високої точності у передачі кольорів та напівтонів. Розміри файлів напряму зв'язані зі збільшенням роздільності і можуть сягати десятки мегабайтів.
Масштабування растрових зображень. При збільшенні растрового зображення, можна спостерігати пікселізацію, тобто при масштабуванні збільшується розмір точок і стають помітними елементи растра. Для усунення цього, потрібно заздалегідь оцифрувати оригінал із роздільністю, достатньої для якісного відтворення при масштабуванні. Або, при масштабуванні застосовують метод інтерполяції, коли при збільшенні зображення, додається необхідне число проміжкових точок.
Прикладні програми растрової графіки призначені для створення книжкових та журнальних ілюстрацій, обробки оцифрованих фотографій, слайдів, відеокадрів, кадрів мультиплікаційних фільмів. Найпопулярнішими прикладними програмами є продукти фірм
Adobe — PhotoShop, Corel — PhotoPaint, Macromedia — FireWorks, Fractal Design — Painter, стандартний додаток у Windows — PaintBrush. Програми растрової графіки можуть використовувати:
· художники-ілюстратори;
· художники-мультиплікатори;
· художники-дизайнери;
· фотографи та ретушери;
· поліграфісти;
· web-дизайнери;
· будь-яка людина — вільний художник, із масою творчих ідей та потенціалу.
Переваги растрової графіки:
· простота автоматизованого вводу (оцифрування) зображень, фотографій, слайдів, рисунків за допомогою сканерів, відеокамер, цифрових фотоапаратів;
· фотореалістичність. Можна отримувати різні ефекти, такі як туман, розмитість, тонко регулювати кольори, створювати глибину предметів.
Недоліки растрової графіки:
· складність управління окремими фрагментами зображення. Потрібно самостійно виділяти ділянку, що є складним процесом;
· растрове зображення має певну роздільність і глибину представлення кольорів. Ці параметри можна змінювати лише у визначених межах і, як правило, із втратою якості;
· розмір файлу є пропорційним до площі зображення, роздільності і типу зображення, і, переважно, при хорошій якості є великим.


58
. ОГЛЯД ГРАФІЧНИХ РЕДАКТОРІВ

КЛАСИФІКАЦІЯ ВИДІВ КОМП’ЮТЕРНОЇ ГРАФІКИ

По своїй структурі зображення можуть бути растровими та векторними (мал. 1). Наприклад, сканер під час сканування розбиває зображення на безліч дрібних елементів (пікселей) і формує з них растрову картинку. Колір кожного пікселя записується у пам’ять комп’ютера за допомогою певної кількості бітів. Біт — мінімальна одиниця пам’яті комп’ютера, яка може зберігати значення або 0, або 1. Піксель це найменший елемент, растрового зображення. Якщо картинка має розмір 800х600, то ці числа відображають кількість пікселей по горизонталі (800) і по вертикалі (600). Чим більше кількість пікселей у зображенні, тим краще його вигляд на екрані і при друці. Число кольорів, в які можна пофарбувати окремий пиксель, визначається як два у степені N, де N — кількість бітів, які зберігають кольорову інформацію про піксель. У контрастній чорно-білій картинці кожний піксель кодується однім бітом. Восьмибітне зображення дозволяє мати 256 кольорів, а 24 біта забезпечують присутність у зображенні більш 16 мільйонів кольорів, що дає можливість працювати з зображеннями професійної якості. Але цей засіб подання зображення не підходить для тих випадків, коли виникає необхідність у масштабуванні зображення у великих межах.
Цього браку позбавлені векторні зображення, у яких розмір будь-якого елемента може бути змінений аж «до нескінченності». Але таку картинку неможливо отримати шляхом сканування, оскільки кожний її елемент будується з допомогою математичних описів об’єктів (так званих примітивів), в якості яких можуть виступати лінії, дуги, кола і тому подібне. Також для кожного примітива існує ряд параметрів, які визначають колір, товщину лінії і тому подібне. Векторна графіка створюється за допомогою спеціальних програмних засобів типу CorelDRAW, Adobe Illustrator. Також такий формат зображення використовується в усіх програмах САПР (Системи Автоматичного Проектування) (P-CAD, Auto-CAD і тому подібне). Фактично векторне зображення існує у вигляді набору математичних формул, які описують елементи зображення. І, нарешті, векторна графіка не залежить від продуктивності апаратних засобів, яка дозволяє легко змінювати розміри статичних зображень (наприклад, збільшити розмір дверної ручки до розміру дома) без втрати загальної кількості елементів зображення, ясності і чіткості їхніх меж при виведенні на екран монітору або при друці.
По свому «професійному» призначенню комп’ютерну графіку та анімацію можна розділити на такі групи:
• комп’ютерна графіка для поліграфії;
• двовимірний комп’ютерний живопис;
• презентаційна графіка;
• двовимірна анімація, яка використовується для створення динамічних зображень і спецєфектів у кіно;
• двовимірне і тривимірне моделювання, застосоване для дізайнерських та інженерних розробок;
• тривимірна анімація, яка використовується для створення рекламних і музичних клипів і кінофільмів;
• обробка відеозображень, необхідна для накладення анімаційних спецефектів для відеозапису;
• наукова візуалізація.

ДВОВИМІРНИЙ КОМП’ЮТЕРНИЙ ЖИВОПИС

Двовимірний комп’ютерний живопис подає собою своєрідний синтез традиційного живопису і засобів комп’ютерної обробки зображень. Програмні і апаратні засоби цього типу передусім направлені на комп’ютерне втілення всіх особливостей роботи з пензликом, різноманітних видів фарб, грунтовок та інших традиційних художніх інструментів і матеріалів. Фахівці, що працюють у цій області (зазвичаем названі «комп’ютерні митці»), користуються спеціальними маніпуляторами, які дозволяють максимально імітувати роботу пензликом і крейдою і називаються «Mous-Pen» (у дослівному перекладі — миша-перо). Такий маніпулятор звичайно має форму ручки (олівця) і відсліжуе не тільки переміщення руки на двовимірній площині, але і інтенсивність натиску, а інколи, і швидкість переміщення. При використанні спеціальних редакторів з підтримкою таких маніпуляторів, митець одержує можливість творити звичайними для нього прийомами та рухами, що замітно зглажує відзнаки між звичайним і комп’ютерним

1 комментарий:

  1. Slots Casinos | JTHub
    Slot Casinos. Slot machines offer the opportunity to win real money with 강원도 출장마사지 no 속초 출장안마 download, no registration 순천 출장안마 required. All slots will come with no 고양 출장마사지 download, 춘천 출장안마 no

    ОтветитьУдалить